手机浏览器扫描二维码访问
杨辉三角形,一目了然,每个数等于它上方两数之和。
研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我发现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”
1050年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”
1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”
1303年朱世杰说:“第n行的m个数可表示为c(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。”
1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”
1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。
可用此性质写出整个杨辉三角。
即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。
即c(n+1,i)=c(n,i)+c(n,i-1)。”
1544年,写过《综合算术》的德国人米歇尔.斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”
斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”
1545年法国的薛贝尔说:“将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。
11^0=1,11^1=1x10^0+1x10^1=11,11^2=1x10^0+2x10^1+1x10^2=121,11^3=1x10^0+3x10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1x10^5=。”
1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。
1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。”
这个被欧洲人称之为帕斯卡三角形。
1708年的pierreRaymonddemontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。
1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。”
1730年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。
1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。”
后来人们也称呼这是中国三角形。
二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。
其中是亏格为0的欧拉定理。
对图论有重大帮助。
对很多等差,甚至一级数列、二级数列等等有重要研究。
那三维的杨辉三角,肯定会有更加重要的信息。
高维的杨辉三角,肯定更加有价值。
或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。
或许杨辉三角是任何一个数学的终点。
近下来,就需要解决高维杨辉三角的数列问题了。
有没有一种简单的办法来。
其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。
这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?
他是小保安,也是盖世高手,同时也是令人闻风丧胆的龙帅,对手提起他来无不闻风丧胆,他的一生充满传奇,可是家里的那位霸道女总裁却总是觉得他这不好那不好,终于有一天,看见他身后的众多美女,霸道总裁怒了都给我死开,他是我的。...
他是貌美心黑的北冥太子!她是飞扬跋扈的漠北公主!悲催初遇,她无意得罪,掉进有洁癖的他的浴桶里,祸及性命,只得掉头逃跑!天降美人,他原本逗弄,却渐渐被她吸引,身陷其中不可自拔!对这黑心肝又深不可测的男人,她表示敬谢不敏!在听说父王不可能同意自己嫁给他之后,她兴奋地敲打着锅碗瓢盆,到他的寝殿门口示威!他饶有兴味地笑了笑,不知道她有没有听过一个成语乐极生悲!就在这会儿,丫头慌慌张张地来了,公主,不好了!皇上说他虽然不愿意您远嫁,但既然北冥太子一片诚心,他就只好同意你们的婚事了同意了!同意了?!砰!她手里的汤碗和她的小心肝,一起摔到地上!碎了!白眼一翻,往下一倒公主!...
李贞睁开了眼睛,发现自己睡回了一千多年前的大唐,附身在了那个和他同名同姓的大唐越王身上。成了千古一帝李世民的儿子?这是好事儿啊,谁不知道李世民时期是中华民族最强盛的时期之一?这个年代,绝对是所有穿越客的最佳选择。再说了,咱可是堂堂大唐亲王,这辈子算是衣食无忧了,不但衣食无忧嘎嘎嘎但是,貌似...
一个大渊王朝,十个不同的家族一片荒宇大地,九个不同的国家。一个是久遭猜忌南疆王之子,一个是谋逆罪臣的家主,为保国家出死入生却最终无法相爱相守。一句女子如茶道尽她们一生的悲凉无奈。谁能执你之手,拂去一个苦字?一杯毒酒,没有绝了他性命,他覆了王朝灭了胡奴,给了她一个盛世天下。她站在城墙上看着他染尽铅华,问你可还记得当年琮瑢之约?...
quot窈窕淑女频刁难,一朝翻身势难挡千金小姐青眼加,都市藏娇美如画。魏一鸣被俏佳人沈嘉珏多次打压,一次酒后,他终于怒了quot...
落花人独立,微雨燕双飞。看一代舞后赵飞燕,如何一朝得宠,入主昭阳,执掌六宫,母仪天下。初见,你仿若天人,似孤绝于世外,孤傲的气质逼人不敢靠近,明明近在眼前,却又恍若在九天之外,无法触及,你为什么哭了只一句话,眼眸交错,繁花纷飞若舞,注定了一世的纠缠再遇,为你舞尽风华,任由你牵着我走向未知的命数,我为你舞倾天下,你为我拱手江山与有情人做快乐事,莫管是劫是缘。...